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Abstract A challenging problem in human action under-
standing is to jointly segment and recognize human actions
from an unseen video sequence, where one person performs
a sequence of continuous actions.

In this paper, we propose a discriminative semi-Markov
model approach, and define a set of features over boundary
frames, segments, as well as neighboring segments. This en-
able us to conveniently capture a combination of local and
global features that best represent each specific action type.
To efficiently solve the inference problem of simultaneous
segmentation and recognition, a Viterbi-like dynamic pro-
gramming algorithm is utilized, which in practice is able
to process 20 frames per second. Moreover, the model is
discriminatively learned from large margin principle, and
is formulated as an optimization problem with exponen-
tially many constraints. To solve it efficiently, we present
two different optimization algorithms, namely cutting plane
method and bundle method, and demonstrate that each can
be alternatively deployed in a “plug and play” fashion. From
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its theoretical aspect, we also analyze the generalization
error of the proposed approach and provide a PAC-Bayes
bound.

The proposed approach is evaluated on a variety of
datasets, and is shown to perform competitively to the
state-of-the-art methods. For example, on KTH dataset, it
achieves 95.0% recognition accuracy, where the best known
result on this dataset is 93.4% (Reddy and Shah in ICCV,
2009).

Keywords Action segmentation and recognition ·
Large-margin method · Semi-Markov model

1 Introduction

A challenging problem in human action understanding is
to recognize a sequence of continuous actions, that is, to
segment and recognize elementary actions such as running,
walking and drawing on board, from a video sequence where
one person performs a sequence of such actions. This has
a wide range of applications in e.g. surveillance, video re-
trieval and intelligent interface. It is nevertheless challeng-
ing due to the high variability of appearances, shapes and
possible occlusions. Things are further complicated for con-
tinuous action recognition since it is also necessary to seg-
ment the sequence of actions.

This problem could however be addressed by consider-
ing the proper temporal context of each elementary action.
Motivated by this observation, in this paper, we consider a
discriminative learning approach that is capable of incorpo-
rating both local and long-range information. To better mo-
tivate our proposed model, we will describe in turn three
categories of statistical models that can be used to repre-
sent human actions (illustrated from top to bottom panels in
Fig. 1).
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(a) An iid model where each frame label is independent
from others.

(b) A frame-wise Markov chain model where each frame
label depends on its adjacent frame labels.

(c) The proposed semi-Markov model where frames in one
segment share one label, and this label depends on its ad-
jacent segment labels.

Fig. 1 We compare three categories of statistical models on the con-
tinuous action sequence prediction problem. Temporal action bound-
aries are depicted as thick vertical lines. The Markovian dependency
in each model is illustrated as green arcs. It turns out that our discrim-
inative SMM approach recovers the first two models (i.e. multiclass
SVM, SVM-HMM) as special cases, by properly setting the maximum
segment length M and the feature function � that can be decomposed
into (φ1, φ2, φ3) and depicted in (red, blue, purple) color, respectively

Figure 1(a) depicts the first category of models: By
simply ignoring the temporal dependencies among video
frames, each frame is assumed to be independent of the
rest. Models such as support vector machines (SVMs), naive
Bayes classifier, nearest neighbor classifier (KNNs) fall into
this category. This however significantly limits their pre-
diction abilities on unseen action sequences. The work of
Niebles and Fei (2007), Schuldt et al. (2004), Wang and
Suter (2007) partially circumvented this issue, by utilizing
spatial-temporal feature descriptors on pre-segmented ac-
tions, and by applying a variant of the above mentioned
models to decide to which category a new action sequence
belongs. This nevertheless requires a pre-segmentation of
the continuous action sequence into elementary segments,
a tedious manual operation.

The second category of models is the Markov chain mod-
els delineated in Fig. 1(b) (include e.g. hidden Markov mod-
els (HMMs) (Brand et al. 1997; Lv and Nevatia 2006), con-
ditional random fields (CRFs) with latent Markov chains
(Sminchisescu et al. 2005) or SVM-HMMs (Tsochantaridis
et al. 2005)) that consider statistical dependencies over adja-
cent frames and show good performance on pre-segmented
datasets. We argue that these models are not well suited

to the problem considered in this paper. First, continuous
action recognition inherently has a segmentation problem,
where each action starts, lasts for a varying period of frames
and then transits to another action. This is however difficult
to be dealt with by Markov chain models. Second, although
Markov chain models utilize local interaction between adja-
cent frames, it does not have access to long-range or global
characteristics, such as the duration of one action segment,
or interactions between adjacent segments.

1.1 Our Model

The third and the model we consider is a semi-Markov
model (SMM) (Ferguson 1980; Ostendorf et al. 1996),
shown in Fig. 1(c). Essentially, it is an extension of HMM
by allowing the underlying process to be a semi-Markov
chain with a variable duration for each state. In particular,
this enables the exploitation of the segmentation nature of
our problem, where the modeling emphasis now shifts more
towards segment-wise properties involving individual seg-
ments of variable length as well as adjacent segments.

Inspired by the work of Ferguson (1980), we propose a
discriminative SMM model, and define a set of distinct fea-
tures at our disposal, which includes (a) the boundary frames
of each segment, (b) the content characteristics of segments,
and (c) the interactions between neighboring segments. This
allows us to conveniently capture a combination of local
and longer-range features that best represent a specific ac-
tion type. It turns out that our discriminative SMM approach
recovers the first two categories of models (i.e. multiclass
SVM, SVM-HMM) as special cases, by properly setting the
maximum segment length M and the feature function � that
can be decomposed into (φ1, φ2, φ3). They are depicted in
Fig. 1(c), using (red, blue, purple) color, respectively. To ef-
ficiently solve the inference problem involving simultane-
ous segmentation and recognition, a Viterbi-like dynamic
programming algorithm is utilized that is able to process
20 frames per second in practice. This model is discrimina-
tively learned from large margin principle, and is formulated
as an optimization problem with exponentially many con-
straints. To solve the learning problem efficiently, we present
two optimization algorithms, namely cutting plane method
and bundle method, and demonstrate that each can be al-
ternatively deployed in a “plug and play” fashion. From its
theoretical aspect, we also analyze the generalization error
of the proposed approach and provide a PAC-Bayes bound.
Empirical simulations, as presented in Sect. 6, support that
the proposed discriminative SMM approach is indeed well-
suited to the problem of segmenting and recognizing human
action sequences.

1.2 Related Literature

There exists a wealth of literature on topics related to human
action recognition. As it is beyond the scope of this paper to
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review these existing literature, interested readers may refer
to e.g. Gavrila (1999) or Moeslund et al. (2006) for a survey
of the field. Here we instead focus our discussions only on
closely related work.

Traditionally generative statistical approaches, especially
the Markov models (Brand et al. 1997; Kale et al. 2004;
Lv and Nevatia 2006; Yamato et al. 1992) have been in
wide use to model and analyze human actions, e.g. HMMs
and its variants such as coupled HMMs (Brand et al. 1997;
Yamato et al. 1992). Recently, large margin based discrim-
inative learning schemes (Vapnik 1995) are extended to
cases where there are structured dependencies among the
outputs (Ratsch and Sonnenburg 2006; Taskar et al. 2004;
Tsochantaridis et al. 2005) (e.g. SVM-HMM where the
output could be time series annotations), and encourag-
ing results are obtained in bio-informatics and natural lan-
guage processing related applications (Ratsch and Sonnen-
burg 2006). As far as we are aware, there is not much work
along this line conducted in the field of video action analy-
sis.

The most relevant work is Ratsch and Sonnenburg (2006)
where a SMM is introduced in the context of gene structure
prediction applications. It start with discussions that lead to
SMM and in particular provide a Viterbi-like decoding al-
gorithm that is similar to that of ours. However, motivated
by large-scale gene prediction problems, the authors turn to
a simpler and faster approximation, a two-stage learning al-
gorithm where the binary SVM classifiers are used to iden-
tify segment boundaries, then the content of each segment
is recognized separately in the second stage. We note in the
passing that conditional random field (CRF), as a discrimi-
native model that deals with structured outputs, has recently
been applied to human action understanding where the un-
derlining model is a Markov Chain model (Sminchisescu
et al. 2005; Wang and Suter 2007). Recently semi-Markov
CRF (Sarawagi and Cohen 2004) has been proposed and uti-
lized for natural language processing problems, where the
Viterbi-like decoding algorithm also resembles that of ours.

1.3 Paper Outline

The remaining sections are organized as follows: In Sect. 2
we provide a probabilistic account of the proposed discrimi-
native approach. To solve the induced optimization problem,
in Sect. 3 we introduce a set of efficient learning and infer-
ence algorithms. We proceed to present details of the feature
representation scheme in Sect. 4, and analyze from theoret-
ical viewpoint the generalization property of our approach
in Sect. 5. Extensive experiments are conducted in Sect. 6
on a variety of datasets, where our approach is also com-
pared against state-of-the-art methods. This is followed by a
summary as well as future directions in Sect. 7.

2 Our Semi-Markov Model

Define the set of action labels as C = {1, . . . ,C}, and the
set of persons I = {1, . . . , I }. We adopt the commonly
used assumption (Dollar et al. 2005; Jhuang et al. 2007;
Nowozin et al. 2007; Schuldt et al. 2004; Wong et al. 2007)
that there is exactly one person P in a given video sequence
X performing actions Y . In this paper, we formulate the hu-
man action analysis problem as solving a convex optimiza-
tion problem over a probabilistic semi-Markov model.

Semi-Markov Model (SMM) Consider a graph defined on
the action sequence label Y for person P ∈ I . More pre-
cisely we consider a semi-Markov model, where each node
in this graph corresponds to a segment of video frames hav-
ing the same action label, and each edge captures the statis-
tical dependency between adjacent segments. Given a video
sequence of length m as X = {xk}m−1

k=0 , we attach a dummy
node xm to this sequence to denote the end of the sequence.
Let l denote the number of segments, and define a set of seg-
ment boundaries {nk}l−1

k=0 with nk−1 < nk < nk+1, ∀k. Fix
n0 = 0, nl = m to satisfy boundary conditions. As a con-
sequence, the first segment is [0, n1), and the last segment
is [nl−1,m). Its action sequence label can be equivalently
represented as Y = {(nk, ck)}l−1

k=0, where each pair (nk, ck)

denotes the starting position and the corresponding action
label for the kth segment [nk,nk+1).

Denote the model parameter W , and define �(X,Y ) a
feature map over the joint input-output space. Now we as-
sume the conditional probability distribution over action se-
quence label Y given current observation sequence X := Xt

is a log-linear model,

logp(Y |X,W) = 〈W,�(X,Y )〉 − AW(X). (1)

Here AW(X) is a normalization constant to ensure
p(Y |X,W) respects a valid probability distribution. In par-
ticular, �(X,Y ) decomposes according to the SMM graph
structure of Fig. 1(c) as

�(X,Y ) =
( l−1∑

i=0

φ1(X,ni, ci),

l−1∑
i=0

φ2(X,ni, ni+1, ci),

l−1∑
i=0

φ3(X,ni, ni+1, ci , ci+1)

)
. (2)

As will become clear in Sect. 4, φ1 and φ2 capture the
observation-label dependencies within the current action
segment: φ1 concentrates on a segment’s boundary frame,
while φ2 takes care of global characteristics of the seg-
ment. The interaction between two neighboring segments
is encoded in φ3. W can also be decomposed in the same
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manner. Now, during training we have access to a set of
T video sequences X = {Xt }Tt=1 as well as correspond-
ing labels Y = {Yt }Tt=1. Therefore, the joint conditional
probability over training sequences becomes p(Y |X ,W) =∏

t p(Yt |Xt,W), since all action sequences are statistically
independent.

Denote F(X,Y ;W) = 〈W,�(X,Y )〉 the discriminant
function. For an unseen video sequence X, its action se-
quence is labeled optimally by solving the following maxi-
mum likelihood decoding problem

Y ∗ = arg max
Y

logp(Y |X,W) = arg max
Y

F (X,Y ;W), (3)

where the second equality is due to (1). In other words, the
optimal sequence label Y ∗ amounts to the one attaining the
maximum value of the discriminant function.

Learning in our discriminative SMM approach is accom-
plished, similar to that of Taskar et al. (2004) and Tsochan-
taridis et al. (2005), by solving a regularized optimization
problem with respect to the parameter W : We would like W

to be bounded to avoid over-fitting, meanwhile maximize
the minimum log ratio of the conditional probabilities

min
W

‖W‖2

2

s.t. log
p(Yt |Xt,W)

p(Y |Xt,W)
≥ �(Yt , Y ) ∀t, Y (4)

for the set of video sequences {t : t ∈ 1, . . . , T }. Here the
margin is �(Yt , Y ), the label loss between the two feasi-
ble label assignments: the ground truth Yt , and Y . Now, we
invoke (1), and add the non-negative slack variables ξ to
account for the non-separable case. As both normalization
terms cancel out, the optimization problem reads

min
W,ξ

‖W‖2

2
+ η

T

∑
t

ξt

s.t. 〈W,	�(Xt ,Y )〉 ≥ �(Yt , Y ) − ξt ∀t, Y, (5)

where 	�(Xt ,Y ) := �(Xt ,Yt )−�(Xt ,Y ). This optimiza-
tion problem is highly intuitive: The margin �(Yt , Y ) re-
flects the magnitude of mispredicted assignment Y w.r.t.
the truth Yt . We would like to safeguard ourselves mostly
against those mispredictions Y which incur a large label
loss. The non-negative ξt in the constraints relaxes the hard
inequality by allowing few violations, at the same time these
violations are penalized within the objective function as the
extra cost term 1

T

∑
t ξt .

For the sake of completeness, here we also present the
dual program

max
α

∑
t,Y

αt,Y �(Yt , Y ) − η

2

∥∥∥∥
∑
t,Y

αt,Y 	�(Xt ,Y )

∥∥∥∥
2

s.t. αt,Y ∈ M ∀t, (6)

where M denotes the probability simplex constraints. Ap-
plying the Representer theorem (Kimeldorf and Wahba
1971) directly yields a dual representation of the discrim-
inant function,

F(X,Y ;W) =
∑
t,Y ′

αtY ′
〈	�(Xt ,Y

′),�(X,Y )
〉
.

Following those of W and �, F can also be decom-
posed into three components fi(X,Y ) = 〈wi,φi(X,Y )〉,
∀i = {1,2,3} as

l−1∑
i=0

(
f1(X,ni, ci) + f2(X,ni, ni+1, ci)

+ f3(X,ni, ni+1, ci, ci+1)

)
.

An important aspect of the proposed discriminative SMM
model is its generality, where the other two categories of
models can be recovered as its special cases: Let M ≥ 1
upper-bound the maximum number of frames a segment
would last. By fixing M = 1 (which implies φ1 = φ2) and
using only features φ1 and φ2 (i.e., setting φ3 = 0), we re-
cover the SVM model displayed in Fig. 1(a). By fixing
M = 1 and utilizing all three features, we obtain the discrim-
inative HMM model (includes e.g. SVM-HMM (Tsochan-
taridis et al. 2005)) illustrated in Fig. 1(b).

3 Efficient Algorithms for Learning and Inference

One standing issue is that both the primal (5) and the dual
problem (6) are practically intractable: Since the configu-
ration space of Y is in the order of T × Cm, the number
of constraints grows exponentially as the length of training
sequences increases. Even for videos of moderate length,
its optimization problem would come with an astronomical
amount of constraints. Nevertheless, as we show next, this
problem can be solved approximately up to precision ε by
optimization techniques such as the cutting plane (Tsochan-
taridis et al. 2005) or the bundle method (Teo et al. 2007) in
a “plug and play” manner.

3.1 Learning: the Cutting Plane vs. the Bundle Method

The main procedure of the cutting plane method is to find
the most violated constraint using the current solution of (5),
then iteratively add these constraints to the optimization
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Algorithm 1 Cutting Plane Method
Input: sequence Xt and true label Yt for example t , sample size
T , precision ε > 0
Initialize the constraint set Rt = ∅ for every t .
repeat

for t = 1 to T do
Y ∗ = argmaxY �(Yt , Y ) + F(Xt ,Y ;W)

ξt = max{0,maxY∈Rt
�(Yt , Y ) + F(Xt ,Y ;W) −

F(Xt ,Yt ;W)}
if �(Yt , Y

∗) + F(Xt ,Y
∗;W) − F(Xt ,Yt ;W) > ξt + ε

then
Add this constraint into Rt ← Rt ∪ {Y ∗}
Optimize (6) using only αtY where Y ∈ Rt .

end if
end for

until R = {R1, . . . ,RT } has not changed in this iteration

problem. This is guaranteed to converge to the optimal so-
lution (Tsochantaridis et al. 2005), while it approximates
the optimal solution to precision ε in a polynomial number
of iterations. By adapting to our context, the cutting plane
method is presented in Algorithm 1.

The bundle methods can be viewed as a quadratic coun-
terpart of the cutting plane algorithm using line search. Both
of they attempt to decrease the true objective function at
every iteration. While the cutting plane algorithm relies on
the monotonicity of the approximating function to guaran-
tee convergence to an optimal solution, the bundle method
directly attempts to decrease the true objective function. Re-
cently, a bundle method solver BMRM is proposed in Teo et
al. (2007) and Smola et al. (2007) for solving general non-
smooth convex optimization problems. Similar to the cut-
ting plane method, we need to compute Y ∗ which can be
efficiently obtained by the inference procedure. In addition,
it requires as input two other quantities: the empirical loss

Remp(W) := 1

T

∑
t

�(Yt , Y
∗
t ) − 〈

W,	�(Xt ,Y
∗
t )

〉
, (7)

as well as its gradient with respect to W that yields

− 1

T

∑
t

	�(Xt ,Y
∗
t ). (8)

Empirical studies in Sect. 6 show that the bundle method
often delivers superior results to those of the cutting plane
method. This observation aligns with those that have been
reported in literature (Smola et al. 2007; Teo et al. 2007).
Meanwhile the computation effort for both BMRM-SMM
and SVM-SMM are very similar.

Algorithm 2 Bundle Method
Input: sequence Xt and true label Yt for example t , sample size
T , precision ε > 0
Initialize W = 0
repeat

Obtain current W from BMRM
for t = 1 to T do

Y ∗
t = argmaxY �(Yt , Y ) + F(Xt ,Y ;W)

Compute the empirical loss �(Yt , Y
∗
t )−〈W,	�(Xt ,Y

∗
t )〉

Compute the gradient −	�(Xt ,Y
∗
t )

end for
Report (7) and (8) to BMRM

until Remp(W) ≤ ε

3.2 Viterbi-Like Inference

For both learning algorithms, we need to solve in our context
an assignment problem

Y ∗ = argmax
Y∈Y

�(Yt , Y ) + F(Xt ,Y ;W). (9)

It is easy to see that the result Y ∗ corresponds to the most
violated constraint in (5) as long as Y ∗ �= Yt . For this pur-
pose, we devise a Viterbi-like dynamic programming pro-
cedure, which is presented in Algorithm 3. Besides, we use
the Hamming distance to measure the label loss �(Y,Y ′)
between alternative action sequence labels as

m−1∑
k=0

(1 − δ(yk = y′
k)),

where δ(x) is the indicator function.
To keep the notation simple, for any segment i, we de-

note its related boundaries as n− � ni−1 and n � ni . Sim-
ilarly the related labels are c− � ci−1 and c � ci . Now, we
maintain a partial score S(X,n, c) that sums up to segment i

(i.e., starts at position 0 and ends with the segment [n−, n)

with labels c− (for n−) and c (for n), respectively). This is
defined as

max
c−,max{0,n−M}≤n−<n

{
S(X,n−, c−) + g(X,n−, n, c−, c)

}
.

(10)

Note the increment g(X,n−, n, c−, c) equals to

f1(X,n−, c−) + f2(X,n−, n, c−)

+ f3(X,n−, n, c−, c) + 1 −
n−1∑

k=n−
δ(yk = c−).

It is easy to verify that in the end, the sum of two terms in the
RHS of (9) amounts to S(m, cm). This algorithm, after mi-
nor modification, is also used to solve the Maximum Likeli-
hood assignment problem of (3) in the prediction phase.
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Algorithm 3 Viterbi-Like Inference
Input: sequence Xt of length m, its true label Yt , and
maximum length of a segment M

Output: score s, optimal label Y ∗
Initialize matrices S ∈ R

m × C, J ∈ Z
m, and L ∈ Z

m to
0, Y ∗ = ∅
for i = 1 to m do

for ci = 1 to C do
(Ji,Li) = argmaxj,cj

S(j, cj ) + g(j, i, cj , ci)

S(i, ci) = S(j∗, c∗
j∗) + g(j∗, i, c∗

j∗ , ci)

end for
end for
c∗
m = argmaxcm

S(m, cm)

s = S(m, c∗
m)

Y ∗ ← {(m, c∗
m)}

i ← m

repeat
Y ∗ ← {(Ji,Li), Y

∗}
i ← Ji

until i = 0

This inference algorithm is very efficient: Its time com-
plexity is O(mMC2), linear with respect to the sequence
length m; Its memory complexity is O(m(C + 2)). Our
C++ implementation1 processes the video sequences at
20 frames per second (FPS), an average speed obtained
throughout our experiments. In terms of hardware, the desk-
top we use comes with an Intel Pentium 4 3.0 GHz processor
and 512 MB memory.

4 Feature Representation

Neuro-psychological findings such as Phillips et al. (2002)
suggest that the visual and motor cortices of human percep-
tion system are more responsible than the semantic ones for
retrieval and recognition of visual action patterns. This mo-
tivates us to represent action features � of (2) by a set of
local features that capture the salient aspect of spatial and
temporal video gradients.

The foreground object in each image is obtained us-
ing an efficient background subtraction method (Cheng et
al. 2006). By applying the SIFT (Lowe 2004) key points
detector, the object is represented as a set of key feature
points extracted from the foreground with each point hav-
ing a 128-dimensional feature vector. Importantly, SIFT fea-
tures bear these nice properties that are critical in our con-
text: It is relatively invariant to illumination and view-angle
changes; Meanwhile, it is insensitive to the objects’ color

1Source code can be downloaded from http://users.rsise.anu.edu.
au/~qshi/code/smm_release.tgz.

appearance by instead capturing local image textures in the
gradient domain. In addition, from each feature point, we
construct an additional 60-dimensional shape context (Be-
longie et al. 2002) features that roughly encode how each
point “sees” the remaining points. The two sets of features
are then concatenated with proper scaling to form a 188-
dimensional vector. This point-set object representation are
further transformed into a 50-dimensional codebook using
K-means, similar to the visual vocabulary approach of Sivic
and Zisserman (2003). Therefore, once a new frame is pre-
sented, each of the key points is projected into this codebook
space with a cluster assignment. Thus the object is now rep-
resented as a 50-dimensional histogram vector h. Typical re-
sults of this codebook representation are illustrated in Fig. 5
bottom row, where we randomly choose four codebook clus-
ters and impose the assigned feature point locations on in-
dividual images. This convincingly shows that each cluster
is able to pick up reasonably similar patches over time and
across people.

Equipped with this codebook representation, we con-
struct feature functions φ1, φ2 and φ3 as follows.

Boundary Frame Features φ1(X,ni, ci) = ψ1(X,ni)⊗ ci ,
where ⊗ denotes a tensor product (the same tensor product
as the one used in e.g. (11) and (12) of Tsochantaridis et al.
2005). ψ1 is a concatenation of two features. The first is a
constant 1 which acts as the bias term. The second part is
obtained from a local window of size ws centered on the
boundary frame. When ws = 1 it becomes the single his-
togram vector hni

.

Node Features on Segment Node features are devised to
capture the characteristics of the segment. φ2 is defined as
φ2(X,ni, ni+1, ci) = ψ2(X,ni, ni+1) ⊗ ci . ψ2(X,ni, ni+1)

contains three components: the length of this segment, the
mean and the variance of the histogram vector of the seg-
ment (i.e., over frames from ni to ni+1 − 1).

Edge Features on Neighboring Segments As in practice we
do have prior knowledge about how long a segment would at
least last, we define the minimum duration of a segment as d .
Similarly φ3(X,ni, ni+1, ci, ci+1) = ψ3(X,ni, ni+1)⊗ ci ⊗
ci+1, and it is a concatenation of the following components:
(1) the mean of the histogram vector from frames ni to
ni+1 − 1, and (2) from frames ni+1 to ni+1 + d , as well as
(3) the variance of the histogram vector from ni to ni+1 − 1,
and (4) from ni+1 to ni+1 + d .

Before carrying on to conduct simulations, we would
like to pause for a moment, and investigate from theoretical
viewpoint to understand how the proposed approach would
generalize on unseen test action sequences.

http://users.rsise.anu.edu.au/~qshi/code/smm_release.tgz
http://users.rsise.anu.edu.au/~qshi/code/smm_release.tgz
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Fig. 2 Comparing seven methods for action recognition on the syn-
thetic dataset. See text for details

5 Generalization Error

Our generalization analysis of the proposed approach is
based on the PAC-Bayes theory introduced by McAllester
and co-workers (Langford and McAllester 2004,
McAllester 1998, McAllester 2003a, 2003b). Germain et al.
(2009) recently show a simplified PAC-Bayes generaliza-
tion proof technique for linear classifiers in a more general
setting.

We start by adopting the PAC setting where an instance-
label pair (X,Y ) is drawn from a fixed but unknown distri-
bution D over the input-output space. For any discriminant
function F(X,Y ;W), let Y ∗ = maxY ′ �=Y F (X,Y ′;W), and
define its difference

M(X,Y ;W) := F(X,Y ;W) − F(X,Y ∗;W). (11)

Assume for now Y is the true label of X, then we would
enforce the margin constraint M(X,Y ;W) ≥ γ , where the
margin is γ ≥ 0 to ensure the separability of an input-output
pair by applying the discriminant functions. A soft con-
straint M(X,Y ;W) ≥ γ − ξ is then adopted to allow the
existence of outliers. Here ξ ≥ 0. This can be further ex-
tended when W is sampled from a posterior distribution Q

over W (Germain et al. 2009),

M(X,Y ;Q) = max
Y ′ �=Y

EQ

[
F(X,Y ;W) − F(X,Y ′;W)

]
.

(12)

In addition, we define the true risk

R(D) = P(X,Y )∼D

(
argmax

Y ′∈Y
{F(X,Y ′;W)} �= Y

)
,

and the γ -empirical risk over the training set S w.r.t. Q as

RQ(S,γ ) = P(X,Y )∼D (M(X,Y ;Q) ≤ γ ) .

With the above setup, the generalization ability of our
proposed approach can be upper-bounded by the following
theorem:

Theorem 1 (PAC-Bayes Risk Bound) Let δ ∈ (0,1], as-
sume F(X,Y ;W) ∈ F is bounded, and the parameter W ∈
W with W being a measurable parameter space. Then, with
probability at least 1 − δ, for a sample S with m instance-
label pairs drawn from data distribution D, for prior P and
posterior Q over W , and for margin γ > 0, we have

R(D)

≤ RQ(S,γ )

+ O

(√
1
2 (γ )−2(‖W‖2) ln(m|Y |) + lnm + ln 1

δ
+ 2

m

)
.

We omitted the detailed proof as it essentially follows The-
orem 5 of Langford et al. (2001), as well as Lemma 4.2 of
Langford and Shawe-Taylor (2002), to deal with structured
output. Notice that this generalization error does not depend
on the dimensionality of the feature space, rather it depends
on the size of the observation sample S and the margin γ : As
we increase the sample size m and margin γ , the risk bound
becomes tighter. In particular, with high probability, the em-
pirical risk deviates from the true risk with an additive term
that diminishes quickly as m goes to infinity.

6 Experiments

During the following experiments, the proposed discrim-
inative SMM approach is compared to three algorithms:
KNN (where K = 1, 3, 5), SVM multiclass and SVM-HMM
(Tsochantaridis et al. 2005). In particular, two variants of
discriminative SMM are considered, namely the one with
cutting plane method (SVM-SMM) and the one with bundle
method (BMRM-SMM).

By default, we fix ε = 1e−4, M = 3, and ws = 3. The
trade-off parameter η of each method (SVM multiclass,
SVM-HMM, SVM-SMM and BMRM-SMM) is tuned sepa-
rately using cross-validation. Moreover, we evaluate the ac-
tion recognition and segmentation performance separately:
A frame-wise recognition rate is utilized to benchmark the
recognition performance for each of the comparison algo-
rithms. To measure segmentation performance, we adopted
the F1-score, which is often used in information retrieval
tasks, and is given by (2 × Precision × Recall)/(Precision +
Recall).
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Fig. 3 Sample frames of one
person engaging in six types of
actions in the KTH dataset

Table 1 Comparisons of action recognition rates on KTH dataset

Method Brief Description Accuracy

Ke et al. (2005) ICCV’05 Cascade classifier, spatio-temporal volumetric features, feature selection 0.630

Schuldt et al. (2004) ICPR’04 SVM, local space time features 0.717

Schindler and van Gool (2008) CVPR’08 SVM using bag of snippets, form (shape) and motion (flow) features 0.927

Dollar et al. (2005) VSPETS’05 SVM, “cuboid” features 0.812

Nowozin et al. (2007) ICCV’07 Baseline SVM linear kernel, “cuboid” features, 0.870

subsequence boosting, “cuboid” features 0.847

Wong et al. (2007) CVPR’07 WX-SVM, “cuboid” features 0.916

Reddy and Shah (2009) ICCV’09 Sphere/Rectangle Trees classifier, “cuboid” features 0.934

Our SVM Baseline SVM, “cuboid” features 0.851

Our SVM-HMM Discriminative HMM 0.912

Our SVM-SMM Discriminative SMM 0.947

Our BMRM-SVM Discriminative SMM 0.950

6.1 Synthetic Dataset

We start with a controlled setting where we are able to
quantitatively measure the performance of comparison algo-
rithms by varying the difficulty level of problems from easy
to difficult. We do this by constructing a two-person two-
action synthetic dataset consisting of five trials, where each
trial has a set of ten sequences and corresponds to a certain
level of difficulty.2 Here each person P equals to one semi-
Markov model containing its own Gaussian emission proba-
bilities N (μc,P , σc,P ) and duration parameters λc,P for the
two actions c = 1,2, respectively. Each sequence of length
150 frames is generated by sampling from a SMM model,
and as a result contains continuous actions. Note that the
levels of difficulty is obtained by varying the mean para-
meters of the Gaussians: as the Gaussians move closer, the
problem becomes increasingly more difficult. Now, we build
five trials as follows: For each trial, five sequences are gen-
erated from each person’s model, and in the end we have
ten sequences. Across trials, we vary the level of difficulty

2This dataset can be downloaded at http://users.rsise.anu.edu.au/~qshi/
code/smm_release.tgz.

by moving μ2 toward μ1 and fixing other parameters of the
models.

Figure 2 displays the action recognition results on this
dataset, where 5-fold cross-validation are utilized. Here both
discriminative SMM variants consistently outperform oth-
ers: In fact, both SVM-SMM and BMRM-SMM gives al-
most the same recognition accuracy regardless the levels
of difficulty. They are followed by SVM-HMM while the
rest methods (namely SVM and KNNs) have inferior perfor-
mance. This clearly shows that as we further exploiting the
contextual information from neighboring nodes up to neigh-
boring segments, the gains in term of recognition rate be-
come more significant.

6.2 KTH Dataset

The KTH dataset (Schuldt et al. 2004) contains 25 individu-
als performing six activities: running, walking, jogging, box-
ing, handclapping and handwaving, where each sequence
contains single action with multiple action cycles. Figure 3
displays exemplar frames of one person taking each of the
six activities.

http://users.rsise.anu.edu.au/~qshi/code/smm_release.tgz
http://users.rsise.anu.edu.au/~qshi/code/smm_release.tgz
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Fig. 4 Sample frames of
subjects each performs one of
the four actions: slow walk, fast
walk, incline walk and walk
with a ball, in an action
sequence of the CMU MoBo
dataset

Table 2 Confusion matrix of BMRM-SMM on the KTH dataset for action recognition

Truth vs. predict Boxing Handclapping Handwaving Jogging Running Walking

Boxing 0.91 0.09 0.00 0.00 0.00 0.00

Handclapping 0.00 0.96 0.00 0.00 0.04 0.00

Handwaving 0.00 0.00 1.00 0.00 0.00 0.00

Jogging 0.00 0.00 0.00 0.89 0.00 0.11

Running 0.00 0.00 0.00 0.08 0.92 0.00

Walking 0.00 0.00 0.00 0.12 0.00 0.88

To make direct comparisons to existing methods in lit-
erature presented in Table 1, in this experiment we adopt
a “cuboid” (Dollar et al. 2005) feature (instead of SIFT)
that captures the local spatio-temporal characteristics us-
ing Gabor filters. More specifically, this detector is tuned
to fire whenever variations in local image intensities con-
tain distinguishing spatio-temporal characteristics. At each
detected interest point location, a 3D cuboid is then ex-
tracted and represented as a flattened vector that contains
the spatio-temporal windowed information including nor-
malized pixel values, brightness gradient and windowed op-
tical flow.

We adopt the same train and test sets splits as that of
Nowozin et al. (2007), only here our models are trained
on the joined train+validation sets: Each model tuning pa-
rameters η of our methods are selected using 5-fold cross-
validation on the joined sets, then a single model is trained
on the joined sets, and the final accuracy is reported on
the test set. Table 1 shows the results of our methods: Our
SVM baseline (85.1%) is comparable to similar methods
(e.g. SVM of Dollar et al. 2005; Nowozin et al. 2007) re-
ported in literature, while our BMRM-SMM (95.0%) per-
forms favorably comparing to these state-of-the-art meth-
ods where the best known result (Reddy and Shah 2009)
is 93.4%. We attribute this to the contextual information that
we are able to exploit through the usage of φ2 features in
our SMM framework. Tables 2 displays the confusion ma-
trix of the BMRM-SMM method, where handwaving ac-
tion can be perfectly identified from the rest actions. On
the other hand, there are a few mistakes among the three
easy-to-be-confused categories: walking, jogging, and run-
ning.

6.3 CMU MoBo Dataset

This dataset (Gross and Shi 2001) contains 24 individuals3

walking on a treadmill. As illustrated in Fig. 4, each subject
performs in a video clip one of the four different actions:
slow walk, fast walk, incline walk and slow walk with a ball.
Each sequence has been pre-processed to contain several cy-
cles of a single action and we additionally manually label the
boundary positions of these cycles. The task on this dataset
is to automatically partition a sequence into atomic action
cycles, as well as predict the action label of this sequence.

Table 3 presents the results averaged over 6-fold cross-
validation. The results of 3NN and 5NN are omitted here as
they are very similar to 1NN. We also experiment with gen-
erative HMM on the task of solely action recognition (pre-
dicting action label for each sequence), where one HMM is
trained for each action type using Baum-Welch algorithm. It
performs slightly better than the baseline methods includ-
ing KNN (K = 1,3,5) and SVM, but is still inferior to
SVM-HMM (Tsochantaridis et al. 2005), its discriminative
counterpart. Note that both SMM variants (SVM-SMM and
BMRM-SMM) significantly outperforms the other methods
including SVM-HMM on action label prediction as well as
on segmentation of action cycles.

6.4 WBD: A Dataset of Continuous Actions

In addition to the existing datasets (such as the MoBo and
the KTH datasets), where each sequence contains exactly

3The dataset originally consists of 25 subjects. We drop the last person
since we experienced technical problems obtaining the sequences of
this individual walking with balls.
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Table 3 Comparison on CMU MoBo dataset. The first row presents action recognition rate, while the second row gives F1-score for segmentation
measurement. See text for details

1NN SVM HMM SVM-HMM SVM-SMM BMRM-SMM

Act. 0.65 ± 0.02 0.67 ± 0.03 0.68 ± 0.08 0.75 ± 0.06 0.75 ± 0.03 0.78 ± 0.07

Seg. 0.16 ± 0.05 0.15 ± 0.03 n/a ± n/a 0.43 ± 0.01 0.59 ± 0.03 0.59 ± 0.03

Table 4 A summary of the action recognition methods performed on the WBD dataset

1NN 3NN 5NN SVM SVM-HMM SVM-SMM BMRM-SMM

Action Recognition 0.82 ± 0.02 0.80 ± 0.03 0.77 ± 0.03 0.84 ± 0.03 0.87 ± 0.02 0.91± 0.02 0.94± 0.01

Fig. 5 A Walk-Bend-Draw (WBD) dataset. Top shows some sample
frames of the dataset. Bottom displays the assignments of image feature
points on four randomly chosen codebook clusters over time and across
person

one type of action, we construct a Walk-Bend-Draw (WBD)
dataset of continuous actions. Some exemplar frames are
displayed in Fig. 5. This is an indoor video dataset contains
three subjects, each performs six action sequences at 30 FPS
at a resolution of 720 × 480, and each sequence consists of
three continuous actions: slow walk, bend body and draw on
board, and on average each action lasts about 2.5 seconds.
We subsample each sequence to obtain 30 key frames, and
manually label the ground truth actions.

The comparison results, obtained using 6-fold cross-
validation, are summarized in Table 4. Both discriminative
SMM variants consistently deliver the best results, while
here BMRM-SMM slightly outperforms SVM-SMM. They
are then followed by SVM-HMM, SVM, and the KNN
methods, in an order that is consistent with the experimental
results for the synthetic dataset. Furthermore, Tables 5 and 6
display the confusion matrices of the two SMM variants:
SVM-SMM vs. BMRM-SMM. where the two actions—
walk and draw—seem to be rarely confused with each other,
nevertheless both sometimes are misinterpreted as bend.
This is to be expected, as although walk and draw appear
to be more similar to human observer in isolated images,

Table 5 Confusion matrix of SVM-SMM applied on the WBD dataset
for action recognition

Truth vs. predict Walk Bend Draw

Walk 0.93 0.07 0.00

Bend 0.05 0.93 0.02

Draw 0.02 0.09 0.89

Table 6 Confusion matrix of BMRM-SMM applied on the WBD
dataset for action recognition

Truth vs. predict Walk Bend Draw

Walk 0.91 0.09 0.00

Bend 0.03 0.93 0.04

Draw 0.00 0.04 0.96

it nevertheless can be learned by discriminative SMM meth-
ods that walk, bend and draw are usually conducted in order.

7 Outlook and Future Work

We present a novel discriminative semi-Markov approach
to human action analysis, where we intend to simultane-
ously segment and recognize continuous action sequences.
We then devise a Viterbi-like dynamic programming algo-
rithm that is able to efficiently solve the inference problem,
and show the induced learning problem can be casted as
a convex optimization problem with many constraints, that
can be subsequently solved and we present two such solvers.
We also analyze the generalization error of the proposed ap-
proach and provide a PAC-Bayes bound. Empirical simula-
tions demonstrate that our approach is competitive to and
often outperforms the state-of-the-art methods.

Our approach can be extended in several directions. It is
promising to explore the dual representation in order to in-
corporate matching cost between point sets. On future work
we also plan to apply this approach to closely related prob-
lems, such as detecting unusual actions from a large video
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dataset. In particular, we are investigating the performance
of our approach on more complex action sequences includ-
ing for example Fox et al. (2009).

Acknowledgements We thank Baochun Bai and Cheng Lei for their
help in creating the WBD dataset, Piotr Dollar for generously provid-
ing the “cuboid” feature implementation, the authors of Gross and Shi
(2001) and Schuldt et al. (2004) for sharing the CMU MoBo and KTH
datasets, respectively.

References

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and ob-
ject recognition using shape contexts. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 24(4), 509–522.

Brand, M., Oliver, N., & Pentland, A. (1997). Coupled hidden Markov
models for complex action recognition. In Proc. IEEE conf. com-
puter vision and pattern recognition (p. 994). Washington: IEEE
Comput. Soc.

Cheng, L., Wang, S., Schuurmans, D., Caelli, T., & Vishwanathan, S.
(2006). An online discriminative approach to background subtrac-
tion. In IEEE international conference on advanced video and sig-
nal based surveillance (AVSS).

Dollar, P., Rabaud, V., Cottrell, G., & Belongie, S. (2005). Behav-
ior recognition via sparse spatio-temporal features. In VS-PETS
workshop.

Ferguson, J. (1980). Variable duration models for speech. In Sympo-
sium on the application of hidden Markov models to text and
speech (pp. 143–179).

Fox, E., Sudderth, E., Jordan, M., & Willsky, A. (2009). Sharing fea-
tures among dynamical systems with beta processes. In NIPS.

Gavrila, D. (1999). The visual analysis of human movement: a survey.
Computer Vision and Image Understanding, 73(1), 82–98.

Germain, P., Lacasse, A., Laviolette, F., & Marchand, M. (2009). PAC-
Bayesian learning of linear classifiers. In ICML (pp. 353–360).
New York: ACM.

Gross, R., & Shi, J. (2001). The CMU motion of body (MoBo) database
(Tech. Rep. Tech. Report CMU-RI-TR-01-18). Robotics Institute.
Carnegie Mellon University.

Jhuang, H., Serre, T., Wolf, L., & Poggio, T. (2007). A biologically
inspired system for action recognition. In ICCV.

Kale, A., Sundaresan, A., Rajagopalan, A., Cuntoor, N., RoyChowd-
hury, A., Kruger, V., & Chellappa, R. (2004). Identification of hu-
mans using gait. In IEEE trans. on image processing (pp. 1163–
1173).

Ke, Y., Sukthankar, R., & Hebert, M. (2005). Efficient visual event
detection using volumetric features. In ICCV (Vol. 1, pp. 166–
173).

Kimeldorf, G., & Wahba, G. (1971). Some results on Tchebycheffian
spline functions. Journal of Mathematical Analysis and Applica-
tions, 33, 82–95.

Langford, J., & McAllester, D. (2004). Computable shell decomposi-
tion bounds. Journal of Machine Learning Research, 5, 529–547.

Langford, J., & Shawe-Taylor, J. (2002). PAC-Bayes and margins. In
NIPS (pp. 439–446). Cambridge: MIT Press.

Langford, J., Seeger, M., & Megiddo, N. (2001). An improved predic-
tive accuracy bound for averaging classifiers. In ICML (pp. 290–
297).

Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2), 91–110.

Lv, F., & Nevatia, R. (2006). Recognition and segmentation of 3-d hu-
man action using HMM and multi-class adaboost. In European
conference on computer vision (Vol. IV, pp. 359–372).

McAllester, D. (1998). Some PAC-Bayesian theorems. In COLT
(pp. 230–234). New York: ACM.

McAllester, D. (2003a). PAC-Bayesian stochastic model selection.
Machine Learning, 51(1), 5–21.

McAllester, D. (2003b). Simplified PAC-Bayesian margin bounds. In
COLT (pp. 203–215). New York: ACM.

Moeslund, T., Hilton, A., & Krüger, V. (2006). A survey of advances
in vision-based human motion capture and analysis. Computer Vi-
sion and Image Understanding, 104(2), 90–126.

Niebles, J., & Fei, L. F. (2007). A hierarchical model of shape and
appearance for human action classification. In Proc. IEEE conf.
computer vision and pattern recognition (pp. 1–8).

Nowozin, S., Bakir, G., & Tsuda, K. (2007). Discriminative subse-
quence mining for action classification. In ICCV.

Ostendorf, M., Digalakis, V., & Kimball, O. (1996). From HMMs to
segment models: a unified view of stochastic modeling for speech
recognition. IEEE Transactions on Speech and Audio Processing,
4(5), 360–378.

Phillips, J., Humphreys, G., Noppeney, U., & Price, C. (2002). The
neural substrates of action retrieval: an examination of semantic
and visual routes to action. Visual Cognition, 9(4–5), 662–685.

Ratsch, G., & Sonnenburg, S. (2006). Large scale hidden semi-Markov
SVMs. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), NIPS
(pp. 1161–1168) Cambridge: MIT Press.

Reddy, K. Shah, J.L., M. (2009). Incremental action recognition using
feature tree. In ICCV.

Sarawagi, S., & Cohen, W. (2004). Semi-Markov conditional random
fields for information extraction. In NIPS.

Schindler, K., & van Gool, L. (2008). Action snippets: how many
frames does human action recognition require? In Computer vi-
sion and pattern recognition (CVPR) New York: IEEE Press.

Schuldt, C., Laptev, I., & Caputo, B. (2004). Recognizing human ac-
tions: a local SVM approach. In Proc intl conf pattern recognition
(pp. 32–36). Washington: IEEE Comput. Soc.

Shi, Q., Wang, L., Cheng, L., & Smola, A. (2008). Discriminative
human action segmentation and recognition using semi-Markov
model. In CVPR.

Sivic, J., & Zisserman, A. (2003). Video Google: a text retrieval ap-
proach to object matching in videos. In Proceedings of the inter-
national conference on computer vision (Vol. 2, 1470–1477).

Sminchisescu, C., Kanaujia, A., Li, Z., & Metaxas, D. (2005). Condi-
tional models for contextual human motion recognition. In IEEE
international conference on computer vision (pp. 1808–1815).

Smola, A., Vishwanathan, S., & Le, Q. (2007). Bundle methods for
machine learning. In NIPS.

Taskar, B., Guestrin, C., & Koller, D. (2004). Max-margin Markov net-
works. In S. Thrun, L. Saul, B. Schölkopf (Eds.), NIPS (pp. 25–
32). Cambridge: MIT Press.

Teo, C., Le, Q., Smola, A., & Vishwanathan, S. (2007). A scal-
able modular convex solver for regularized risk minimization. In
KDD.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005).
Large margin methods for structured and interdependent output
variables. Journal of Machine Learning Research, 6, 1453–1484.

Vapnik, V. (1995). The nature of statistical learning theory. New York:
Springer.

Wang, L., & Suter, D. (2007). Recognizing human activities from sil-
houettes: motion subspace and factorial discriminative graphical
model. In Proc. IEEE conf. computer vision and pattern recogni-
tion (pp. 1–8).

Wong, S., Kim, T., & Cipolla, R. (2007). Learning motion cate-
gories using both semantic and structural information. In CVPR
(pp. 1–6).

Yamato, J., Ohya, J., & Ishii, K. (1992). Recognizing human action
in time-sequential images using hidden Markov model. In Proc.
IEEE conf. computer vision and pattern recognition (pp. 379–
385).


	Human Action Segmentation and Recognition Using Discriminative Semi-Markov Models 
	Abstract
	Introduction
	Our Model
	Related Literature
	Paper Outline

	Our Semi-Markov Model
	Efficient Algorithms for Learning and Inference
	Learning: the Cutting Plane vs. the Bundle Method
	Viterbi-Like Inference

	Feature Representation
	Boundary Frame Features
	Node Features on Segment
	Edge Features on Neighboring Segments

	Generalization Error
	Experiments
	Synthetic Dataset
	KTH Dataset 
	CMU MoBo Dataset
	WBD: A Dataset of Continuous Actions

	Outlook and Future Work
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


